The unbalanced Gromov-Wasserstein distance: Conic Formulation and Relaxation

Thibault Séjourné

Mokameeting - 14th October, 2020

Joint work with Francois-Xavier Vialard and Gabriel Peyré

Introduction

Some of machine learning challenges are

- matching point clouds of \mathbb{R}^d up to isometries^1
- graph matching²

¹Alaux, J., Grave, E., Cuturi, M., & Joulin, A. (2018). Unsupervised hyperalignment for multilingual word embeddings. ²Vayer, T., Chapel, L., Flamary, R., Tavenard, R., & Courty, N. (2018). Fused Gromov-Wasserstein distance for structured objects.

mm-space: $\mathcal{X} = (X, d_X, \mu)$ with (X, d_X) complete separable, μ positive measure

Definition - GW distance³

Take $\mathcal{X} = (X, d_X, \mu)$ and $\mathcal{Y} = (Y, d_Y, \nu)$ equipped with **probabilities**. Define a penalty $\lambda : \mathbb{R}_+ \to \mathbb{R}_+$ (e.g. $\lambda(t) = t^q$). One defines $GW(\mathcal{X}, \mathcal{Y}) = \inf_{\{\pi_1 = \mu, \pi_2 = \nu\}} \mathcal{G}(\pi)$ where

$$\mathcal{G}(\pi) \stackrel{\text{\tiny def.}}{=} \int \lambda(|d_X(x,x') - d_Y(y,y')|) \mathrm{d}\pi(x,y) \mathrm{d}\pi(x',y')$$

 3 Mémoli, F. (2011). Gromov–Wasserstein distances and the metric approach to object matching.

Specificities of GW

Two key differences with OT

- GW is non-convex (quadratic assignment program)
- $(\mathcal{X}, \mathcal{Y})$ can differ radically in nature.⁴

Isometric mm-spaces

Def: $\mathcal{X} \sim \mathcal{Y} \Leftrightarrow \exists \psi : X \to Y$ bijective isometry s.t. $d_X(x, x') = d_Y(\psi(x), \psi(x'))$ and $\nu = \psi_{\sharp}\mu$ **Prop:** With $\lambda(t) = t^q$, $GW^{\frac{1}{q}}$ distance and definite iff $\mathcal{X} \sim \mathcal{Y}$

⁴Solomon, J., Peyré, G., Kim, V. G., & Sra, S. (2016). Entropic metric alignment for correspondence problems.

Motivations of GW

- GW makes sense in a variety of problems (NLP, generative learning⁵, domain adaptation⁶, etc...)
- Though GW suffers limitations similar to OT
 - restricted to probabilities
 - sensitive to outliers
- Some attempts to extend to positive measures
 - Generalize Sturm's⁷ Lq transportation distance⁸ (no fast algo)
 - Partial-GW⁹ (no properties)

⁵Bunne, C., Alvarez-Melis, D., Krause, A., & Jegelka, S. (2019). Learning generative models across incomparable spaces.

⁶Redko, I., Vayer, T., Flamary, R., & Courty, N. (2020). CO-Optimal Transport.

 $^{^{7}\}mbox{Sturm, K. T. (2006)}.$ On the geometry of metric measure spaces.

⁸De Ponti, N., & Mondino, A. (2020). Entropy-Transport distances between unbalanced metric measure spaces.

⁹Chapel, L., Alaya, M. Z., & Gasso, G. (2020). Partial Gromov-Wasserstein with Applications on Positive-Unlabeled Learning.

Unbalanced OT - Static and conic formulations

Csiszàr divergences¹⁰

Define $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ l.s.c., convex, $\varphi(1) = 0$, $\varphi'^{\infty} = \lim_{x \to \infty} \frac{\varphi(x)}{x}$. Decompose $\forall (\alpha, \beta), \alpha = \frac{d\alpha}{d\beta}\beta + \alpha^{\top}$ (discrete: $\alpha = \sum_i \alpha_i \delta_{x_i}$)

Definition - φ -divergence

$$\begin{split} \mathsf{D}_{\varphi}(\alpha,\beta) &\stackrel{\text{\tiny def.}}{=} \int_{\mathcal{X}} \varphi(\frac{\mathrm{d}\alpha}{\mathrm{d}\beta}(\mathbf{x})) \mathrm{d}\beta(\mathbf{x}) + \varphi^{\prime\infty} \int_{\mathcal{X}} \mathrm{d}\alpha^{\top}(\mathbf{x}), \\ \mathsf{D}_{\varphi}(\alpha,\beta) &= \sum_{\beta_i \neq 0} \varphi(\frac{\alpha_i}{\beta_i})\beta_i + \varphi^{\prime\infty} \sum_{\beta_i = 0} \alpha_i. \end{split}$$

Examples:

• KL $(\alpha, \beta) = \sum_{i} (\log(\frac{\alpha_i}{\beta_i})\alpha_i - \alpha_i + \beta_i)$: $\varphi(x) = x \log x - x + 1$,

• TV $(\alpha, \beta) = \sum_i |\alpha_i - \beta_i|$: $\varphi(x) = |x - 1|$.

 10 Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observation.

Idea: Soften the hard constraint $\pi_1 = \mu \rightarrow D_{\varphi}(\pi_1|\mu)$.

Definition - **Unbalanced OT**¹¹

For any φ -divergence D_{φ} and any measures (μ, ν) one defines $UOT(\mu, \nu) = \inf_{\pi \ge 0} \mathcal{L}_1(\pi)$ where $\mathcal{L}_1(\pi) \stackrel{\text{def.}}{=} \int_{\mathcal{X}} \lambda(d) d\pi + D_{\varphi}(\pi_1, \mu) + D_{\varphi}(\pi_2, \nu).$

- Two dynamics: transportation vs creation/destruction.
- **Balanced OT** is retrieved with $D_{\varphi} = \iota_{(=)}$.
- Choice of D_{\varphi}: prior on the mass variation dynamics.

 $^{^{11}}$ Liero, M., Mielke, A., & Savaré, G. (2018). Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures.

Unbalanced optimal transport - conic formulation

Idea: Add a mass variable and lift on a cone $\mathfrak{C} = (X \times \mathbb{R}_+)/(X \times \{0\})$ endowed with a distance $\mathcal{D}_{\mathfrak{C}}([x, r], [y, s])$ (e.g. $X \subset \mathbb{S}^1$)

Definition

Define
$$\operatorname{COT}(\mu, \nu) \stackrel{\text{def.}}{=} \inf_{\gamma \in \mathcal{U}_p(\mu, \nu)} \mathcal{H}_1(\gamma)$$
 where
 $\mathcal{H}_1(\gamma) \stackrel{\text{def.}}{=} \int \mathcal{D}_{\mathfrak{C}}([x, r], [y, s])^q \mathrm{d}\gamma([x, r], [y, s]),$
 $\mathcal{U}_p(\mu, \nu) \stackrel{\text{def.}}{=} \{\gamma \ge 0, \ \int r^p \mathrm{d}\gamma_1(\cdot, r) = \mu, \int s^p \mathrm{d}\gamma_2(\cdot, s) = \nu\}$

Key point: $COT = \inf_{\gamma \in \mathcal{U}_p(\mu,\nu)} \int \mathcal{D}_{\mathfrak{C}} d\gamma$ (Wasserstein over \mathfrak{C})

 \Rightarrow If $\mathcal{D}_{\mathfrak{C}}$ is a distance, then COT is a distance

Equivalence between both formulations

Proposition

If one defines $\mathcal{D}_{\mathfrak{C}}$ as

$$egin{aligned} \mathcal{D}_{\mathfrak{C}}([x,r],[y,s])^q &= H_{\lambda(d(x,y))}(r^p,s^p), \ H_c(r,s) \stackrel{ ext{def.}}{=} \inf_{ heta \geq 0} heta L_c(r/ heta,s/ heta), \ L_c(r,s) \stackrel{ ext{def.}}{=} c + r arphi(1/r) + s arphi(1/s), \end{aligned}$$

Then UOT = COT.

- \bullet In general $\mathcal{D}_{\mathfrak{C}}$ is definite but not necessarily a distance.
- Note that H_c depends on φ , $\mathcal{D}_{\mathfrak{C}}$ on (φ, λ, p, q)

When is $\mathcal{D}_{\mathfrak{C}}$ a distance over \mathfrak{C} ?

In those settings $\mathcal{D}_{\mathfrak{C}}$ is a distance, thus so is the conic formulation.

Gaussian Hellinger

$$\begin{split} \mathsf{D}_{\varphi} &= \mathrm{KL}, \quad \lambda(t) = t^2 \quad \text{and} \quad q = p = 2, \\ \mathcal{D}_{\mathfrak{C}}([x,r],[y,s])^2 &= r^2 + s^2 - 2rse^{-d(x,y)/2}. \end{split}$$

Hellinger-Kantorovich / Wasserstein-Fisher-Rao

$$\begin{split} \mathsf{D}_{\varphi} &= \mathrm{KL}, \quad \lambda(t) = -\log \cos^2(t \wedge \frac{\pi}{2}) \quad \text{and} \quad q = p = 2, \\ \mathcal{D}_{\mathfrak{C}}([x,r],[y,s])^2 &= r^2 + s^2 - 2rs\cos(\frac{\pi}{2} \wedge d(x,y)). \end{split}$$

Partial optimal transport

$$egin{aligned} & \mathbb{D}_arphi = \mathrm{TV}, \quad \lambda(t) = t^q \quad ext{and} \quad q \geq 1 \quad ext{and} \quad p = 1, \ & \mathcal{D}_\mathfrak{C}([x,r],[y,s])^q = r + s - (r \wedge s)(2 - d(x,y)^q)_+. \end{aligned}$$

Unbalanced Gromov-Wasserstein

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_2(\pi) = \int \lambda(|d_X - d_Y|) d\pi d\pi + D_{\varphi}(\pi_1 \otimes \pi_1, \mu \otimes \mu) + D_{\varphi}(\pi_2 \otimes \pi_2, \nu \otimes \nu).$

$$\mathcal{G}(\pi) = \int \lambda(|d_X(x,x') - d_Y(y,y')|) d\pi(x,y) d\pi(x',y'),$$
$$\mathcal{L}_1(\pi) = \int_{\mathcal{X}} \lambda(d) d\pi + \mathsf{D}_{\varphi}(\pi_1,\mu) + \mathsf{D}_{\varphi}(\pi_2,\nu).$$

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_2(\pi) = \int \lambda(|\mathbf{d}_{\mathbf{X}} - \mathbf{d}_{\mathbf{Y}}|) \mathrm{d}\pi \mathrm{d}\pi + \mathsf{D}_{\varphi}(\pi_1 \otimes \pi_1, \mu \otimes \mu) + \mathsf{D}_{\varphi}(\pi_2 \otimes \pi_2, \nu \otimes \nu).$

To be compared with $\mathcal{G}(\pi) = \int \lambda(|d_X(x, x') - d_Y(y, y')|) d\pi(x, y) d\pi(x', y'),$ $\mathcal{L}_1(\pi) = \int_{\mathcal{X}} \lambda(d) d\pi + \mathsf{D}_{\varphi}(\pi_1, \mu) + \mathsf{D}_{\varphi}(\pi_2, \nu).$

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_2(\pi) = \int \lambda(|d_X - d_Y|) d\pi d\pi + \mathsf{D}_{\varphi}(\pi_1 \otimes \pi_1, \mu \otimes \mu) + \mathsf{D}_{\varphi}(\pi_2 \otimes \pi_2, \nu \otimes \nu).$

$$\mathcal{G}(\pi) = \int \lambda(|d_X(x,x') - d_Y(y,y')|) d\pi(x,y) d\pi(x',y'),$$
$$\mathcal{L}_1(\pi) = \int_{\mathcal{X}} \lambda(d) d\pi + \mathsf{D}_{\varphi}(\pi_1,\mu) + \mathsf{D}_{\varphi}(\pi_2,\nu).$$

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_2(\pi) = \int \lambda(|d_X - d_Y|) d\pi d\pi + D_{\varphi}(\pi_1 \otimes \pi_1, \mu \otimes \mu) + D_{\varphi}(\pi_2 \otimes \pi_2, \nu \otimes \nu).$

$$\begin{split} \mathcal{G}(\pi) &= \int \lambda(|d_X(x,x') - d_Y(y,y')|) \mathrm{d}\pi(x,y) \mathrm{d}\pi(x',y'), \\ \mathcal{L}_1(\pi) &= \int_{\mathcal{X}} \lambda(d) \mathrm{d}\pi + \mathsf{D}_{\varphi}(\pi_1,\mu) + \mathsf{D}_{\varphi}(\pi_2,\nu). \end{split}$$

One defines $CGW(\mathcal{X}, \mathcal{Y}) = \inf_{\gamma \in \mathcal{U}_p(\mu, \nu)} \mathcal{H}_2(\gamma)$ where $\mathcal{H}_2(\gamma) \stackrel{\text{def.}}{=} \int \mathcal{D}_{\mathfrak{C}}([d_X(x, x'), rr'], [d_Y(y, y'), ss'])^q d\gamma([x, r], [y, s]))$ $d\gamma([x', r'], [y', s']),$

$$\mathcal{U}_p(\mu,\nu) \stackrel{\text{\tiny def.}}{=} \{\gamma \ge 0, \ \int r^p \mathrm{d}\gamma_1(\cdot,r) = \mu, \int s^p \mathrm{d}\gamma_2(\cdot,s) = \nu\}.$$

$$\mathcal{G}(\pi) = \int \lambda(|d_X(x,x') - d_Y(y,y')|) d\pi(x,y) d\pi(x',y'),$$
$$\mathcal{H}_1(\gamma) = \int \mathcal{D}_{\mathfrak{C}}([x,r],[y,s])^q d\gamma([x,r],[y,s]).$$

One defines $CGW(\mathcal{X}, \mathcal{Y}) = \inf_{\gamma \in \mathcal{U}_p(\mu, \nu)} \mathcal{H}_2(\gamma)$ where $\mathcal{H}_2(\gamma) \stackrel{\text{def.}}{=} \int \mathcal{D}_{\mathfrak{C}}([d_X(x, x'), rr'], [d_Y(y, y'), ss'])^q d\gamma([x, r], [y, s]))$ $d\gamma([x', r'], [y', s']),$

$$\mathcal{U}_{p}(\mu,\nu) \stackrel{\text{\tiny def.}}{=} \{\gamma \geq 0, \ \int r^{p} \mathrm{d}\gamma_{1}(\cdot,r) = \mu, \int s^{p} \mathrm{d}\gamma_{2}(\cdot,s) = \nu\}.$$

$$\mathcal{G}(\pi) = \int \lambda(|d_X(x,x') - d_Y(y,y')|) d\pi(x,y) d\pi(x',y'),$$
$$\mathcal{H}_1(\gamma) = \int \mathcal{D}_{\mathfrak{C}}([x,r],[y,s])^q d\gamma([x,r],[y,s]).$$

One defines $CGW(\mathcal{X}, \mathcal{Y}) = \inf_{\gamma \in \mathcal{U}_p(\mu, \nu)} \mathcal{H}_2(\gamma)$ where $\mathcal{H}_2(\gamma) \stackrel{\text{def.}}{=} \int \mathcal{D}_{\mathfrak{C}}([\mathbf{d}_{\mathbf{X}}(\mathbf{x}, \mathbf{x}'), rr'], [\mathbf{d}_{\mathbf{Y}}(\mathbf{y}, \mathbf{y}'), ss'])^q d\gamma([\mathbf{x}, r], [\mathbf{y}, s]))$ $d\gamma([\mathbf{x}', r'], [\mathbf{y}', s']),$

$$\mathcal{U}_p(\mu,\nu) \stackrel{\text{\tiny def.}}{=} \{\gamma \ge 0, \ \int r^p \mathrm{d}\gamma_1(\cdot,r) = \mu, \int s^p \mathrm{d}\gamma_2(\cdot,s) = \nu\}.$$

$$\mathcal{G}(\pi) = \int \lambda(|\mathbf{d}_{\mathbf{X}}(\mathbf{x}, \mathbf{x}') - \mathbf{d}_{\mathbf{Y}}(\mathbf{y}, \mathbf{y}')|) \mathrm{d}\pi(\mathbf{x}, \mathbf{y}) \mathrm{d}\pi(\mathbf{x}', \mathbf{y}'),$$
$$\mathcal{H}_{1}(\gamma) = \int \mathcal{D}_{\mathfrak{C}}([\mathbf{x}, \mathbf{r}], [\mathbf{y}, \mathbf{s}])^{q} \mathrm{d}\gamma([\mathbf{x}, \mathbf{r}], [\mathbf{y}, \mathbf{s}]).$$

One defines $CGW(\mathcal{X}, \mathcal{Y}) = \inf_{\gamma \in \mathcal{U}_p(\mu, \nu)} \mathcal{H}_2(\gamma)$ where $\mathcal{H}_2(\gamma) \stackrel{\text{def.}}{=} \int \mathcal{D}_{\mathfrak{C}}([d_X(x, x'), rr'], [d_Y(y, y'), ss'])^q d\gamma([x, r], [y, s]))$ $d\gamma([x', r'], [y', s']),$

$$\mathcal{U}_p(\mu,\nu) \stackrel{\text{\tiny def.}}{=} \{\gamma \ge 0, \ \int r^p \mathrm{d}\gamma_1(\cdot,r) = \mu, \int s^p \mathrm{d}\gamma_2(\cdot,s) = \nu\}.$$

$$\mathcal{G}(\pi) = \int \lambda(|d_X(x,x') - d_Y(y,y')|) d\pi(x,y) d\pi(x',y'),$$
$$\mathcal{H}_1(\gamma) = \int \mathcal{D}_{\mathfrak{C}}([x,r],[y,s])^q d\gamma([x,r],[y,s]).$$

Theorem

- 1. If $\lambda^{-1}(\{0\}) = \{0\}$ and $\varphi^{-1}(\{0\}) = \{1\}$, then UGW and CGW are definite up to isometries.
- 2. If $\mathcal{D}_{\mathfrak{C}}$ is a cone distance then $\mathsf{CGW}^{1/q}$ is a distance.
- 3. For any (φ, λ, p, q) and associated $\mathcal{D}_{\mathfrak{C}}$, UGW \geq CGW.

Same results as UOT, except UGW \geq CGW while UOT = COT (non-convexity).

Implementation and numerics

Idea: Entropic regularization + alternate minimization

$$\begin{split} \mathsf{U}\mathsf{GW}_{\varepsilon}(\mathcal{X},\mathcal{Y}) &\stackrel{\text{def.}}{=} \inf_{\pi \geq 0} \mathcal{L}_{2}(\pi) + \varepsilon \mathrm{KL}(\pi \otimes \pi, (\mu \otimes \nu)^{\otimes 2}) \\ &\geq \inf_{\pi,\gamma \geq 0} \mathcal{F}(\pi,\gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma, (\mu \otimes \nu)^{\otimes 2}), \\ \text{where } \mathcal{F}(\pi,\gamma) \stackrel{\text{def.}}{=} \int \lambda(|d_{X} - d_{Y}|) \mathrm{d}\pi \mathrm{d}\gamma + \mathsf{D}_{\varphi}(\pi_{1} \otimes \gamma_{1}, \mu \otimes \mu) \\ &\quad + \mathsf{D}_{\varphi}(\pi_{2} \otimes \gamma_{2}, \nu \otimes \nu) \end{split}$$

- Alternate descent = sequence of UOT_{ε} problems (Sinkhorn).
- Numerically we observe at optimality $\pi^* = \gamma^*$.
- \Rightarrow Computes a local minimizer of UGW_{ε}.

Numerical experiment

Setup: $\lambda(t) = t^2$, $D_{\varphi} = \rho \text{KL}$, $(\mathcal{X}, \mathcal{Y}) =$ graphs with geodesic distance, (μ, ν) uniform probabilities

Take home message: UGW encodes partial and/or geometrically consistent matchings.

- Blending of Unbalanced OT with Gromov-Wasserstein distances
- The relaxed formulation UGW is appealing for computations
- The conic formulation CGW is a metric between mm-spaces up to isometry

Thank you !

Implementation

Idea: Entropic regularization + alternate minimization

$$\begin{split} \mathsf{U}\mathsf{GW}_{\varepsilon}(\mathcal{X},\mathcal{Y}) &\stackrel{\text{def.}}{=} \inf_{\pi \geq 0} \mathcal{L}_{2}(\pi) + \varepsilon \mathrm{KL}(\pi \otimes \pi, (\mu \otimes \nu)^{\otimes 2}) \\ &\geq \inf_{\pi, \gamma \geq 0} \mathcal{F}(\pi, \gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma, (\mu \otimes \nu)^{\otimes 2}), \\ \text{where } \mathcal{F}(\pi, \gamma) \stackrel{\text{def.}}{=} \int \lambda(|d_{X} - d_{Y}|) \mathrm{d}\pi \mathrm{d}\gamma + \mathsf{D}_{\varphi}(\pi_{1} \otimes \gamma_{1}, \mu \otimes \mu) \\ &\quad + \mathsf{D}_{\varphi}(\pi_{2} \otimes \gamma_{2}, \nu \otimes \nu) \end{split}$$

- $\forall s > 0$, (π, γ) optimal $\Rightarrow (s\pi, \frac{1}{s}\gamma)$ optimal
- \Rightarrow impose $m(\pi) = m(\gamma)$
 - Numerically we observe at optimality $\pi^* = \gamma^*$.

- Focus on $\lambda(t) = t^2$ for improved time and memory complexity
- Focus on $D_{\varphi} = KL$ which verifies

$$\begin{split} \mathrm{KL}(\mu\otimes\nu,\alpha\otimes\beta) &= m(\nu)\mathrm{KL}(\mu,\alpha) + m(\mu)\mathrm{KL}(\nu,\beta) \\ &+ (m(\mu) - m(\alpha))(m(\nu) - m(\beta)). \end{split}$$

 $\Rightarrow\,$ Given $\gamma,$ minimizing w.r.t. π amounts to solve a regularized UOT problem.

We focus on $D_{\varphi} = \rho KL$.

Proposition - alternate descent \leftrightarrow solve UOT

For a fixed γ , $\pi \in \arg \min_{\pi} \mathcal{F}(\pi, \gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma | (\mu \otimes \nu)^{\otimes 2})$ is the solution of

$$\begin{split} \min_{\pi} & \int c_{\gamma}^{\varepsilon}(x, y) \mathrm{d}\pi(x, y) + \rho m(\gamma) \mathrm{KL}(\pi_{1}|\mu) + \rho m(\gamma) \mathrm{KL}(\pi_{2}|\nu) \\ & + \varepsilon m(\gamma) \mathrm{KL}(\pi|\mu \otimes \nu), \quad \text{where} \\ c_{\gamma}^{\varepsilon}(x, y) \stackrel{\text{def.}}{=} & \int \lambda(|d_{X}(x, \cdot) - d_{Y}(y, \cdot)|) \mathrm{d}\gamma \\ & + \rho \int \log(\frac{\mathrm{d}\gamma_{1}}{\mathrm{d}\mu}) \mathrm{d}\gamma_{1} + \rho \int \log(\frac{\mathrm{d}\gamma_{2}}{\mathrm{d}\nu}) \mathrm{d}\gamma_{2} + \varepsilon \int \log(\frac{\mathrm{d}\gamma}{\mathrm{d}\mu \mathrm{d}\nu}) \mathrm{d}\gamma. \end{split}$$

Algorithm 1 – UGW(X, Y, ρ , ε)

Input: mm-spaces $(\mathcal{X}, \mathcal{Y})$, relaxation ρ , regularization ε **Output:** approximation (π, γ) minimizing $\mathcal{F} + \varepsilon KL^{\otimes}$

- 1: Initialize (π, γ) and (f, g)
- 2: while (π, γ) has not converged do
- 3: Update $\pi \leftarrow \gamma$ and compute the cost $c \leftarrow c_{\pi}^{\varepsilon}$
- 4: Update parameters $(\tilde{\rho}, \tilde{\varepsilon}) \leftarrow (m(\pi)\rho, m(\pi)\varepsilon)$
- 5: Compute (f,g) that solves UOT $(\mu, \nu, c_{\pi}^{\varepsilon}, \tilde{\rho}, \tilde{\varepsilon})$
- 6: Update $\gamma(x, y) \leftarrow \exp\left[(f(x) + g(y) c(x, y))/\tilde{\varepsilon}\right] \mu(x)\nu(y)$
- 7: Rescale $\gamma \leftarrow \sqrt{m(\pi)/m(\gamma)}\gamma$

8: Return (π, γ) .

Detailed algorithm

Algorithm 2 – UGW(X, Y, ρ , ε)

Input: mm-spaces $(\mathcal{X}, \mathcal{Y})$, relaxation ρ , regularization ε **Output:** approximation (π, γ) minimizing $\mathcal{F} + \varepsilon KL^{\otimes}$

- 1: Initialize $\pi = \gamma = \mu \otimes \nu / \sqrt{m(\mu)m(\nu)}$, g = 0.
- 2: while (π, γ) has not converged do

3: Update
$$\pi \leftarrow \gamma$$
, then $c \leftarrow c_{\pi}^{\varepsilon}$, $\tilde{\rho} \leftarrow m(\pi)\rho$, $\tilde{\varepsilon} \leftarrow m(\pi)\varepsilon$

4: while (f, g) has not converged **do**

5:
$$\forall x, f(x) \leftarrow -\frac{\tilde{\varepsilon}\tilde{\rho}}{\tilde{\varepsilon}+\tilde{\rho}} \log\left(\int e^{(g(y)-c(x,y))/\tilde{\varepsilon}} \mathrm{d}\nu(y)\right)$$

6:
$$\forall y, g(y) \leftarrow -\frac{\tilde{\tilde{\varepsilon}}\tilde{\rho}}{\tilde{\tilde{\varepsilon}}+\tilde{\rho}} \log\left(\int e^{(f(x)-c(x,y))/\tilde{\varepsilon}} \mathrm{d}\mu(x)\right)$$

7: Update
$$\gamma(x, y) \leftarrow \exp\left[(f(x) + g(y) - c(x, y))/\tilde{\varepsilon}\right] \mu(x)\nu(y)$$

8: Rescale
$$\gamma \leftarrow \sqrt{m(\pi)/m(\gamma)}\gamma$$

9: Return (π, γ) .